Surjective Functions on Computably Growing Cantor Sets

نویسنده

  • Peter Hertling
چکیده

Every in nite binary sequence is Turing reducible to a random one. This is a corollary of a result of P eter G acs stating that for every co-r.e. closed set with positive measure of in nite sequences there exists a computable mapping which maps a subset of the set onto the whole space of in nite sequences. Cristian Calude asked whether in this result one can replace the positive measure condition by a weaker condition not involving the measure. We show that this is indeed possible: it is su cient to demand that the co-r.e. closed set contains a computably growing Cantor set. Furthermore, in the case of a set with positive measure we construct a surjective computable map which is more e ective than the map constructed by G acs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recursion Theory I

This document presents the formalization of introductory material from recursion theory — definitions and basic properties of primitive recursive functions, Cantor pairing function and computably enumerable sets (including a proof of existence of a one-complete computably enumerable set and a proof of the Rice’s theorem).

متن کامل

Course 221: Michaelmas Term 2006 Section 1: Sets, Functions and Countability

1 Sets, Functions and Countability 2 1.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Cartesian Products of Sets . . . . . . . . . . . . . . . . . . . . 5 1.3 Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 Equivalence Relations . . . . . . . . . . . . . . . . . . . . . . . 6 1.5 Functions . . . . . . . . . . . . . . . . . . . . . . . . ...

متن کامل

Definability, automorphisms, and dynamic properties of computably enumerable sets

We announce and explain recent results on the computably enumerable (c.e.) sets, especially their definability properties (as sets in the spirit of Cantor), their automorphisms (in the spirit of FelixKlein’sErlanger Programm), their dynamic properties, expressed in terms of how quickly elements enter them relative to elements entering other sets, and theMartin Invariance Conjecture on their Tur...

متن کامل

Computably isometric spaces

We say that an uncountable metric space is computably categorical if every two computable structures on this space are equivalent up to a computable isometry. We show that Cantor space, the Urysohn space, and every separable Hilbert space are computably categorical, but the space C[0, 1] of continuous functions on the unit interval with the supremum metric is not. We also characterize computabl...

متن کامل

Deenability, Automorphisms, and Dynamic Properties of Computably Enumerable Sets

We announce and explain recent results on the computably enu-merable (c.e.) sets, especially their deenability properties (as sets in the spirit of Cantor), their automorphisms (in the spirit of Felix Klein's Erlanger Programm), their dynamic properties, expressed in terms of how quickly elements enter them relative to elements entering other sets, and the Martin Invariance Conjecture on their ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. UCS

دوره 3  شماره 

صفحات  -

تاریخ انتشار 1997